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Abstract-The scattering matrix as a function of scattering angle has been computed for four 
different homogeneous particles: a prolate spheroid, an oblate spheroid, a finite cylinder and 
a bisphere with touching components. The directions of the incident and scattered light beams, 
as well as the rotation axis of each particle, lie in the same plane. The particles considered 
have the same refractive index, volume and orientation of the rotation axis with respect to 
the incident light. The computations were performed with the (superposition) T-matrix 
method, the separation of variables method for spheroids and the discrete-dipole approxi- 
mation. The results are presented in the form of tables and graphs. Their usefulness as 
benchmark results and some other aspects are also discussed. Copyright 0 1996 Elsevier 
Science Ltd 

1. INTRODUCTION 

It is well known that many small particles occurring in nature differ appreciably from homogeneous 
spheres. Consequently, the classical Lorenz-Mie theory’,’ can not be used for accurate compu- 
tations of light scattering properties of such particles. This has inspired many scientists to develop 
methods for computing light scattering by non-spherical particles (see, e.g., Refs. 3-19). In some 
of these methods certain basic features of the Lorenz-Mie theory, such as separation of variables, 
were retained, but in other approaches completely new paths were followed. 

During a workshop on Light Scattering by Non-Spherical Particles, held in May 1995 in 
Amsterdam, the idea was born to tackle a few well-defined scattering problems with different 
methods and to compare the results. The main reasons for starting the project were that this would 
provide more insight into each of the methods and that some very reliable benchmark numbers 
could be created in such a way. The primary purpose of this paper is to present the results of the 
project. 

The scattering problems considered are described in Sec. 2. The methods used to solve these 
scattering problems are the (superposition) T-matrix method, the separation of variables method 
for spheroids and the discrete-dipole approximation. These are briefly treated in Sec. 3. Section 
4 contains the computational results in the form of tables and graphs. These results pertain to the 
elements of the scattering matrix as functions of the scattering angle for directions in the plane 
containing the direction of the incident light and the rotation axis of the particle. A short discugsion 
is given in Sec. 5 and concluding remarks are presented in Sec. 6. 

2. DESCRIPTION OF THE PROBLEMS 

We consider four different scattering problems, namely light scattering by a prolate spheroid, 
an oblate spheroid, a finite circular cylinder and a bisphere with equal touching components. Each 
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particle is homogeneous, made of some optically inactive substance and has a refractive index of 
l.SM.01 i. The size of each particle is such that 2nr/A = 5, where r is the radius of the 
equal-volume-sphere and A is the wavelength in the surrounding medium. The rotation axis of each 
particle is defined in such a way that any rotation about this axis maps all points of the surface 
of the particle into the surface. The prolate and oblate spheroid are both obtained by rotation of 
an ellipse whose major axis is twice as large as its minor axis. The height of the cylinder is twice 
as large as the diameter of its circular cross section. 

The scattering geometry of each particle is as follows. The particle is illuminated by a plane 
harmonic wave propagating along the positive z-axis of a Cartesian coordinate system (x, y, z). 
The origin of this coordinate system lies inside the particle (see Fig. 1). The rotation axis of the 
particle makes an angle 0, = 50” with the positive z-axis and lies in the x-z plane. The scattering 
angle, 0, is the angle between the direction of the incident light and that of the scattered light. 
In this paper we only consider scattering directions in the x-z plane having non-negative 
x-components. 

The scattering of light in a particular direction can be described by (Ref. 1) 
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Here Stokes parameters are used for the incident (superscript “in”) and scattered (superscript “SC”) 
light and the scattering plane acts as the plane of reference for defining the Stokes parameters. 
Furthermore, F is the scattering matrix, k = 27r/A, and R is the distance between the point of 
detection and the particle. The elements of F are written as ~j with ij = 1, 2, 3, 4. It should be 
noted that they are all dimensionless. For the four scattering problems considered in this paper, 
the elements F,,, F,4, Fz3, Fz4, F3,, Fj2, F4, and Fd2 vanish identically. Furthermore, F,, = Fzz, 
F,2 = F2,, F,* = - F4, and F,, = Fa for all scattering angles. Therefore, we will only report 
computational results in this paper for the elements F,,, F?,, F,, and Fd3. 

Plane wave 

Fig. 1. A plane wave scattered by a non-spherical particle located at the origin of a Cartesian coordinate 
system. The (rotation) axis of the particle makes an angle 0, with the positive z-direction and lies in the 

x-z-plane, which also contains the direction of the scattered light. 
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Table 1. The elements F,,, I$,, Fu and F4, of the scattering matrix for various 
values of the scattering angle (in degrees). This table refers to the prolate 

spheroid described in the text. 

0 (deg) F,, F21 F33 

0 654.032186 
5 570.099227 

10 416.303708 
15 254.517251 
20 129.014741 
25 53.967561 
30 20.630846 
35 11.649349 
40 12.016994 
45 13.358025 
50 13.253511 
55 12.621991 
60 13.250280 
65 16.286833 
70 21.702240 
75 28.427030 
80 34.846911 
85 39.374609 
90 40.882224 
95 38.907807 

100 33.716280 
105 26.332118 
110 18.455097 
115 11.968646 
120 8.027310 
125 6.390260 
130 5.797329 
135 5.165163 
140 4.335211 
145 3.642342 
150 3.130457 
155 2.557525 
160 1.979901 
165 1.844747 
170 2.388185 
175 3.219522 
180 3.665305 

29.977488 651.970555 
26.236151 568.210226 
22.379107 414.231995 
19.537602 251.984936 
17.349058 125.951591 
14.659070 50.605928 
10.777187 17.448021 
6.125455 9.160858 
1.947290 10.533918 
-.467244 12.826912 
-.437450 13.232194 
1.871544 12.376925 
5.597229 11.925697 
9.519488 13.092340 

12.406708 16.080288 
13.274932 20.183307 
11.571469 24.243361 
7.353046 27.180508 
1.475275 28.343652 
-4.373663 27.553418 
-8.123074 24.936727 
-8.392097 20.813578 
-5.642785 15.756630 
-2.261953 10.598905 
-.921420 6.121562 

-2.306316 
-4.490982 
-4.896891 
-2.872681 
-.087487 
1.490084 
1.505215 
1.056556 
1.192896 
1.974793 
2.768502 
2.997046 

2.641840 
.063335 

,1.604322 
,2.050105 
.1.225073 
.134539 

:XZ 
.567927 
.631563 

1.142141 
1.502259 

-42.353812 
-38.235212 
-34.925736 
-30.015082 
-21.909139 
-11.689715 
-2.247357 
3.776879 
5.445436 
3.699846 
.610945 

-1.619786 
-1.420807 
1.797473 
7.647560 

14.983535 
22.196119 
27.522946 
29.424772 
27.120060 
21.188743 
13.774908 
7.776773 
5.078905 
5.110302 
5.342005 
3.665528 
.354281 

-2.517702 
-3.429023 
-2.749784 
-1.824932 
-1.397630 
-1.287459 
-1.185222 
-1.181623 
-1.481686 

3. METHODS OF SOLUTION 

Three computational methods have been used to obtain numerical solutions in the form of tables 
and graphs (shown in the next section) for the scattering problems described in the preceding 
section. These methods are (i) the (superposition) T-matrix Method (TMM), (ii) The Separa,tion 
of Variables Method for spheroids (SVM) and (iii) The Discrete-Dipole Approximation (DDA). 
In this section a brief description of each of these methods will be presented with references to other 
papers for further details. 

(i) The T-matrix Method 

The T-matrix approach for calculating light scattering by single non-spherical particles and the 
(superposition) T-matrix method for aggregated scatterers are reviewed in Ref. 8. It should be 
noted that in the case of aggregated spheres the (superposition) T-matrix method is equivalent to 
the separation of variables method. *O**’ Numerical aspects of computer calculations are discussed 
in Refs. 17, 22 and 23, while numerical accuracy checks of the TMM codes used in this study are 
described in detail in Ref. 17 for spheroids, Ref. 24 for bispheres, and Ref. 25 for cylinders. The 
parameter nmax specifying the maximum value of the index n in the expansion of the scattered 
electric field in vector spherical functions [see Eq. (6) of Ref. 81 was increased until all scattering 
matrix elements converged to within &A, where A was equal to 10e6 for the spheroids and 10e4 
for the cylinder and the bisphere. Although this internal convergence of T-matrix computations 
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does not necessarily imply that T-matrix results are indeed accurate to within + A, the comparison 
of internally converged T-matrix computations for spheroids with analogous SVM computations 
strongly suggests that for the particles under consideration internal convergence is also an excellent 
measure of the absolute accuracy of TMM as well as SVM computations. 

T-matrix results for spheroids and bispheres were obtained using double-precision arithmetic, 
while convergent computations for cylinders required the use of extended-precision floating-point 
variables, as described in Ref. 22. The parameter nmax was equal to 23 for the prolate spheroid, 
20 for the oblate spheroid, 79 for the cylinder, and 30 for the bisphere. 

(ii) Separation of Variables Method for spheroids 

This is the classical approach based on the light scattering theory of a plane linearly polarized 
electromagnetic wave which is scattered by a particle with any size and refractive index. In this 
method the vector wave equation is separated in a special coordinate system which is chosen in 
such a way that the surface of the particle coincides with one of the coordinate surfaces. Then the 
solution of the wave equation is expanded in terms of the corresponding wavefunctions, and the 
expansion coefficients are determined under the boundary conditions. The single-particle solutions 
by the SVM were obtained for spheres (Mie theory), infinitely long circular cylinders, homogeneous 
spheroids and spheroids having a core-mantle structure. 

For homogeneous spheroidal particles, the solution was first developed by Asano and Ya- 
mamoto.13 It is based on expansions of the radiation fields in the form of Debye potentials (as for 
spherical particles). Another approach was used by Farafonov,14 (see also Ref. 26) who introduced 
a special basis for expansion of the electromagnetic fields: a combination of Debye and Hertz 

Table 2. As Table 1, but for an oblate spheroid. 

@ (deg) F,, F21 F 33 F-43 

0 
5 

10 
15 
20 
25 
30 
35 
40 
45 
50 
55 
60 
65 
70 
75 
80 
85 
90 
95 

100 
105 
110 
115 
120 
125 
130 
135 
140 
145 
150 
155 
160 
165 
170 
175 
180 

758.151698 
741.327842 
643.920727 
488.665877 
315.978622 
167.601091 
69.184670 
22.249716 
9.906180 

lo.928921 
11.639137 
a.784380 
4.903274 
2.533494 
I.871537 
1.780490 
1.474315 
1.039549 
.9oaa69 

1.260279 
1.899870 
2.507129 
2.885247 
3.025313 
3.020455 
2.953068 
2.839171 
2.641826 
2.321617 
x.884915 
1.403657 
.997891 
788261 
1839114 

1.121989 
1.526847 
1.926611 

-2.693769 
1.822435 
7.100306 

11.966287 
15.230261 
15.883501 
13.54laai 
8.942556 
3.908154 

436690 
-:548136 

295981 
1:45a333 
I.838393 
1.389537 

740772 
:405614 
.380773 
.335628 
.014100 

-.563533 
-1.183531 
-1.633155 
-1.824744 
-1.797216 
-1.647173 
-1.460720 
-1.282542 
-1.120201 
- .963051 
-. 796017 
-.599450 
-.340276 
.028370 
.538256 

1.141671 
1.642682 

757.186135 

-.167918 

740.770617 
643.784415 
488.466987 
315.058005 
165.687728 
66.726587 
20.148441 
8.813401 

10.724085 
11.586164 
a.220722 
3.799228 
1.415124 
1.241145 
1.617439 
1.250125 
.169950 

-.784941 
-.918094 

1.002748 
1.996702 
2.410565 
2.157741 
1.414964 
.486243 

- .334409 
-.a57545 

-1.037294 
- .958690 
-.784362 
-.676967 
-.721336 
-.877908 
-.997111 
-.902574 

38.156226 
28.679981 
11.185498 
-7.151935 

-18.681061 
-19.632041 
-12.275939 
-3.020081 

2.276553 
2.060248 
-.9642aa 

-3.081795 
-2.735182 
-1.018000 

177192 
: 072748 

- .668034 
- .952256 
-.311872 

.a63253 

1.969632 
1.806582 

1.292530 
109553 

-1:112348 
-2.001327 
-2.385530 
-2.285279 
-1.843820 
-1.244771 
-.646160 
-.I45678 
.217447 
.427765 
445440 
:103355 

-.445853 
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Table 3. As Table 1, but for a cylinder. 

@ (deg) Ft, F21 43 F43 

699 

0 740.9332 37.5036 747.4012 
5 638.6521 20.9379 637.3573 

10 441.3904 21.1998 439.5997 
15 246.2887 17.5768 243.2641 
20 110.3032 17.2234 105.7549 
25 42.6053 16.8952 37.0739 
30 21.6631 14.2745 16.2889 
35 20.2613 9.5299 16.1415 
40 20.6450 4.4085 18.2074 
45 17.0194 9818 
50 11.1250 - : 1370 

16.1952 
11.0767 

55 6.8036 1.0245 6.6610 
60 7.0144 3.8974 5.7256 
65 11.9433 7.8116 8.8350 
70 20.2477 11.9286 14.6851 
75 29.7223 14.9271 21.2305 
80 38.3174 14.9710 26.8259 
85 44.5038 10.4771 30.5410 
90 47.1100 1.5231 31.8189 
95 45.1600 -9.1845 29.9344 

100 38.3524 -17.1733 24.3916 
105 27.8701 -18.9294 16.1213 
110 16.7569 -14.5024 7.9549 
115 8.5410 -7.5306 3.0548 
120 4.8827 -2.3830 2.3149 
125 4.4227 -.a926 3.5475 
130 4.3343 -1.5074 3.7570 
135 3.1224 -1.8904 2.1072 
140 1.6090 -.9008 .6322 
145 1.1999 1001 
150 1.8581 - : 2564 

.7233 
1.7294 

155 2.3169 -1.4107 1.7130 
160 1.9324 -1.5314 .3655 
165 1.5273 -.0034 - .4351 
170 2.1937 1.5824 9006 
175 3.7707 1.3022 3 14925 
180 4.9823 -.7903 4.9095 

-27.6815 
-20.5455 
-33.5005 
-34.2307 
-26.1927 
-12.4617 

.4487 
7.6913 
0.4642 
5.1392 
1.0265 

-1.4021 
-1.1083 

1.8883 
7.2129 

14.4751 
22.9006 
30.6278 
34.7072 
32.5545 
24.1048 
12.5906 

2.6822 
-2.6281 
-3.5702 
-2.4050 
-1.4669 
-1.1799 
-1.1737 

- .9521 
-.6293 
-.6640 

-1.1204 
-1.4640 
-1.2237 

-.6212 
-.2861 

potentials (a superposition of the approaches for spheres and infinitely long cylinders). The 
resulting solution is rather simple and can be implemented with a relatively small numerical oode. 
From a computational point of view, it is more effective than the approach of Asano and 
Yamamoto, especially for large values of the ratios of major to minor axes (see Refs. 26 and 27 
for details). In this paper, Farafonov’s solution is used for calculations. The numerical calculations 
were performed on a PC-AT/486-50 with double precision, 

(iii) The Discrete -Dipole Approximation 

A new powerful method to compute, at least in principle, electromagnetic scattering by a particle 
of any shape and structure was developed by Purcell and Pennypacker.” In this discrete-dipole 
approximation (DDA) method a particle is modelled as a group of interacting dipoles. The dipole 
moments and thus the electric fields radiated by the dipoles are unknown. The total electric field 
at the dipole positions is determined by solving the system of linear equations for the individual 
dipole fields. 

One difficult point in all DDA applications is the question of the correct expression for the 
polarizability of a dipole. This happens because we are dealing with finite sized spherical (hard core) 
dipoles which do not fill a particle completely. Lumme and Rahola,” chose to use for the 
polarizability the first three terms of the expansion of the Mie coefficient, a,, in terms of the size 
parameter. The first term is equal to the classical Clausius-Mossotti relation and the third term 
gives the radiation reaction. The physical meaning of the second term, proportional to the’ fifth 
power of the size parameter, x0, of a dipole, still lacks an interpretation. 
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The other approximation needed in the DDA is a relation between the refractive index of a dipole 
and that of the bulk of the medium. For this purpose an effective medium theory is needed. Lumme 
and Rahola,” showed that a semi-empirical model by Sihvola,‘* produced very good results in the 
case of spheres when compared to Mie theory. The relative errors of F,, never exceed a few per 
cent and the absolute errors of the other elements are typically less than a few times 0.01. 

In our numerical computations we have used a new algorithm, the quasi-minimal residual 
method,z9 to solve the large systems of linear equations. This, together with using fast Fourier 
transform, makes our DDA code very efficient (see Rahola,30 for details). 

Among the users of the DDA there seems to be a consensus that fairly accurate results are 
obtained if the size parameter of a dipole x0 is smaller than about 0.3. For our calculations we used 
x0 z 0.2. The exact value depends on the particle considered and on the relation 

2rcr/l = 5 = x0 (6N/7~)“~ (2) 

where N is the number of dipoles. ‘9 Since all four particles under consideration in this paper have 
an octagonal symmetry, N must be a multiple of 8. The combinations (x0, N) used for the prolate 
spheroid, the oblate spheroid, the cylinder and the bisphere were, respectively, (0.20, 8320), (0.20, 
8664), (0.22, 6656) and (0.20, 8448). 

The other free parameter in our DDA code comes from a semi-empirical model for the effective 
medium theory which involves a parameter v. 28 The best choice turned out to be v = - 0.2, which 
is consistent with our earlier,19 conclusion v = - 0.3 + 0.3. Thus the effective refractive index for 
a dipole assumes the value 2.25 - 0.037i.19 

Table 4. As Table 1, but for a bisphere. 

@ b-kc9 FII F21 F33 F43 

0 791.1861 
5 667.5445 

10 445.4292 
15 -31.6601 
20 90.1434 
25 26.1503 
30 11.1767 
35 14.0979 
40 17.0633 
45 15.5742 
50 11.8903 
55 9.2327 
60 9.1894 
65 11.5358 
70 15.0093 
75 18.1173 
80 19.7231 
85 19.4541 
90 17.8394 
95 15.8687 

100 14.0172 
105 11.6906 
110 8.1457 
115 4.1522 
120 1.9229 
125 2.5528 
130 4.1854 
135 4.0847 
140 2.2526 
145 1.3044 
150 2.5793 
155 4.2317 
160 4.0060 
165 2.3750 
170 1.6649 
175 2.9481 
180 5.0554 

26.6659 
27.3329 
24.2288 
19.5437 
14.7204 
9.9846 
5.3408 
1.2673 

-1.5183 
-2.6177 
-2.1769 
-.6845 
1.3658 
3.6488 
5.9049 
7.6698 
8.1367 
6.4630 
2.5167 

-2.4887 
-6.2745 
-6.9134 
-4.4155 
-.9028 
1.1637 
1.1444 
.4416 
.4987 

1.0814 
1.0415 
.3184 
.1413 

1.0810 
1.8607 

7765 
-211237 
-4.8831 

789.9327 
665.9841 
443.3876 
229.1450 

87.4396 
23.7187 

9.3928 
13.0541 
16.5720 
15.3212 
11.5960 
8.7265 
8.3936 

10.4180 
13.5648 
16.3957 
17.8520 
17.5889 
16.0401 
14.0227 
11.9481 
9.4122 
5.9915 
2.5610 
1.0596 
2.2099 
4.0694 
4.0222 
1.9717 
.2238 
.2291 
.9894 

1.0856 
.7497 
.9671 

1.5315 
1.1584 

-35.6460 
-36.5208 
-35.0357 
-27.8748 
-16.2315 
-4.6448 
2.8581 
5.1706 
3.7711 
.9826 

-1.4739 
-2.9364 
-3.4825 
-3.3504 
-2.5314 
-.7688 
2.0250 
5.2272 
7.3910 
6.9990 
3.7888 
-.5346 

-3.3101 
-3.1411 
-1.1049 

.5690 
8734 
:5081 
1317 

-17527 
-2.5493 
-4.1120 
-3.7015 
-1.2714 
1.1106 
1.3549 
-.6088 
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Fig. 2. The element F,, and the ratios of elements of the scattering matrix F,,/F,,, -Fr,/F,, and FJF,, 
as functions of the scattering angle in degrees for the prolate spheroid as described in the text. The dots 

represent DDA results. The curves are based on TMM and SVM results. 

The intersections perpendicular to the rotation axis of our four particles can not be strictly 
circular in DDA computations. This requires a rotational averaging about that axis. The 
intersections have roughly an octagonal symmetry which limits the need for rotations about angles 
in the interval &45”. We found that stable results were obtained with four rotation averages, i.e., 
rotation angles of 0, 15, 30 and 45”. 

The DDA is computationally much more laborious than the TMM and SVM, but, in principle, 
it can handle scatterers that are arbitrarily inhomogeneous and irregular. 

4. COMPUTATIONAL RESULTS 

The elements F,, , 
scattering angles, 0, 

Fz,, Fs3 and Fd3 of the scattering matrix are 
in the range O-180” with a step size of 5”. 

tabulated in Tables 14 for 

The results for the prolate (Table 1) and oblate (Table 2) spheroids were obtained with the 
T-matrix method and the separation of variables method. Both methods gave the same numbers 
within all six decimals given. This is a very gratifying result, since the methods are quite different 
and the scattering problems involved are not trivial. 

The numbers in Tables 3 and 4 for the cylinder and bisphere, respectively, have been calculated 
with the (superposition) T-matrix method. Since the pertinent computer code has been thoroughly 
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checked, the numbers in Tables 3 and 4 are expected to be correct within one unit of the last digit 
given. 

The results of the computations with the discrete dipole approximation are shown as dots in 
Figs. 2-5. These figures show the element F,, and the ratios - FJF,,, FJF,,, and FJF,, as 
functions of scattering angle for the four scattering problems under consideration. The ratio 
- F,,/F,, represents the degree of linear polarization of the scattered light for incident unpolarized 
light. The curves in Figs. 2-5 are based on the results of Tables l-4. It is evident from Figs. 2-5 
that the DDA produces the general features of the curves very well and that the deviations are 
generally small enough to be of little or no importance in many practical situations (see also 
Ref. 31). 

5. DISCUSSION 

It should be noted that the matrix elements F,, , F2,, F,, and Fd3 are not independent since in 
the cases considered in this paper 

F,, = (Fit + F& + F$,)1'2 (31 

for all scattering angles. This is due to the fact that the amplitude matrix, which transforms the 
electric field components, is diagonal.32 
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Fig. 3. As Fig. 2, but for an oblate spheroid. 
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Fig. 4. As Fig. 2, but for a cylinder and curves based on TMM results. 

Evidently, because of their high accuracy and reliability the numbers of Tables l-4 may be 
viewed as benchmark results, which can be used to check an arbitrary computational method,for 
light scattering by non-spherical particles. The high accuracy of the tables also reveals some subtle 
details. For instance, although for all four particle shapes F,, is very close to F3,, for a scattering 
angle of O”, these two matrix elements are never exactly equal for scattering in the strictly forward 
direction. This can not be seen in the top right panels of Figs. 2-5, but it is evident from the lower 
panels in conjunction with Eq. (3). 

By comparing Figs. 2-S with each other we can easily notice the shape effects of the scattering 
patterns. Apparently, there are a number of similarities. For example, each of the four curves 
representing - FJF,, vs scattering angle has at least 5 minima. Also, going from one particle to 
another, the angular distributions of corresponding matrix elements are strikingly similar for 
scattering angles smaller than about 50”, which is the direction of the rotation axis of each particle 
(see Fig. 1). Furthermore, the cylinder and the bisphere show a large overall similarity in the 
angular distributions of their scattering matrix elements. On the other hand, the deep minimum 
in F,,/F,, near a scattering angle of 90” is only shown by the oblate spheroid. 

6. CONCLUDING REMARKS 

Initially we thought that it would cost little time to implement the project, described in’ the 
Introduction of this paper, since all three computational methods had been well developed and each 
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Fig. 5. As Fig. 2, but for a bisphere and curves based on TMM results. 

advocate was very confident about his own method. Our first attempts, however, yielded widely 
different numbers. Continuing our efforts in a more modest mood, we checked’the relevant methods 
and computer codes very carefully, until good agreement was obtained. In doing so, a lot was 
learned about the methods and several improvements in the implementation of the SVM and DDA 
were made. Apparently the original differences among the authors were due to misunderstandings 
about nomenclature and notation. 

A question which is often posed in discussions on computations of light scattering by 
non-spherical particles is: “What is the best method?’ Obviously, there is no unique answer to that 
question, since many factors are involved, such as the structure, size, shape and orientation of the 
particle, the scattering properties sought, the accuracy needed and the computer facilities which 
are (easily) available. The computations of this paper were limited to four scattering problems, 
which is not sufficient for a detailed comparison of the merits of the three methods used. We 
have, however, shown that all three of them are in good shape and deserve to be further 
developed. 
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